O uso da interface cérebro-máquina na reabilitação de idosos que sofreram acidente vascular encefálico: uma revisão de escopo
DOI:
https://doi.org/10.53843/rh81v621Palavras-chave:
Interface Cérebro-Máquina, Reabilitação, Idosos, Acidente Vascular Encefálico, Aplicação terapêuticaResumo
Introdução: a Interface Cérebro-Máquina (ICM) consiste em uma tecnologia emergente que permite a comunicação direta entre o cérebro e dispositivos externos, interpretando sinais neurais e os convertendo em comandos para executar movimentos, oferecendo novas possibilidades para a reabilitação de pacientes, especialmente idosos, que sofreram Acidente Vascular Encefálico (AVE). O AVE caracteriza-se pela interrupção do fluxo sanguíneo cerebral, podendo ser classificado em dois tipos principais: isquêmico e hemorrágico. Ambos resultam em danos neurológicos significativos e, muitas vezes, em sequelas motoras permanentes que comprometem a qualidade de vida dos sobreviventes, sendo uma das principais causas de morte e incapacidade entre idosos em todo o mundo. Entretanto, a eficiência da ICM não está totalmente esclarecida na literatura. Desse modo, elaborou-se uma revisão de escopo visando mapear e sintetizar as evidências científicas sobre os efeitos do uso da ICM na reabilitação de idosos que sofreram AVE. Métodos: seguiu-se o protocolo PRISMA-ScR, e a condução desse estudo procedeu-se em 5 etapas: 1- elaboração da pergunta de pesquisa de acordo com o método População, Contexto, Conceito- PCC; 2- seleção das bases de dados e definição dos termos e estratégias de busca; 3- exportação dos estudos ao gerenciador Rayyan, estabelecendo-se critérios de elegibilidade; 4- seleção dos artigos por dois revisores blindados/ independentes; 5- elaboração da planilha com as evidências encontradas. Resultados: incluíram-se nesta revisão 34 estudos que analisaram o uso da ICM na reabilitação de idosos pós AVE. Mais de 70% dos participantes tiveram melhorias significativas na função motora. Discussão: com base nos resultados, a ICM mostra-se como uma alternativa na reabilitação de pacientes geriátricos pós AVE, mas existem lacunas nos estudos analisados que dificultam tirar conclusões definitivas. Conclusão: a utilização da ICM mostrou-se útil para melhorar a qualidade de vida dos pacientes. Porém, a elaboração de novos estudos se faz necessária para elucidar esse tema.
Referências
1- Maria P, Santos S, Daniela de Assumpção, Gomes A. Prevalência e fatores associados ao acidente vascular cerebral em idosos no Brasil, 2019. 2023 Jun 6.
2- Ministério da Saúde (BR). Acidente vascular cerebral (AVC). Gov.br.
3- Mussatto GG, Silva S.A. Perspectivas e potencialidades da interface cérebro-máquina. Rev Sist Inf FSMA. 2014;(13): 51-56.
4- Macedo S, Danielle Costa Lopes, Agripino D, Claudia A, Paulino J, Soares R, et al. Interface cérebro-máquina: avanços na neurociência e o desenvolvimento de bioeletrodos. Research, Society and Development. 2022 Sep 22;11(12). DOI: https://doi.org/10.33448/rsd-v11i12.35046
5- Cantillo-Negrete J, Carino-Escobar RI, Yao W. Feasibility of a Wearable Soft Robot Triggered by Brain-Computer Interface for Stroke Upper Extremity Rehabilitation. Journal of medical devices. 2023 Dec 17. DOI: https://doi.org/10.1115/1.4064198
6- Miao Y, Chen S, Zhang X, Jin J, Xu R, Daly I, et al. BCI-Based Rehabilitation on the Stroke in Sequela Stage. Neural Plasticity. 2020 Dec 13. DOI: https://doi.org/10.1155/2020/8882764
7- Contreras-Vidal JL, Bortole M, Zhu F, Nathan K, Venkatakrishnan A, Francisco GE, et al. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. American Journal of Physical Medicine & Rehabilitation. 2018 Aug;97(8):541–550 DOI: https://doi.org/10.1097/PHM.0000000000000914
8- Zich C, Debener S, Thoene AK, Chen LC, Kranczioch C. Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiology of Aging. 2017 Jan;49:183–197. DOI: https://doi.org/10.1016/j.neurobiolaging.2016.10.011
9- Curado MR, Cossio EG, Broetz D, Agostini M, Cho W, Brasil FL, et al. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. Lebedev MA, editor. PLOS ONE. 2015 Oct 23;10(10). DOI: https://doi.org/10.1371/journal.pone.0140161
10- Zich C, Debener S, Maarten De Vos, Frerichs S, Maurer S, Kranczioch C. Lateralization patterns of covert but not overt movements change with age: An EEG neurofeedback study. 2015 Aug 1;116:80–91. DOI: https://doi.org/10.1016/j.neuroimage.2015.05.009
11- Toppi J, Mattia D, Anzolin A, Risetti M, Petti M, Cincotti F, et al. Time varying effective connectivity for describing brain network changes induced by a memory rehabilitation treatment. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014 Aug 26: 6786-6789. DOI: https://doi.org/10.1109/EMBC.2014.6945186
12- Cheng N, Phua KS, Lai HS, Tam PK, Tang KY, Cheng KK, et al. Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke. IEEE Transactions on Biomedical Engineering. 2020 Dec 1;67(12):3339–3351. DOI: https://doi.org/10.1109/TBME.2020.2984003
13- Zhang R, Feng S, Hu N, Low S, Li M, Chen X, et al. Hybrid Brain-Computer Interface Controlled Soft Robotic Glove for Stroke Rehabilitation. IEEE journal of biomedical and health informatics. 2024 Jul;28(7):4194–4203. DOI: https://doi.org/10.1109/JBHI.2024.3392412
14- Carino-Escobar RI, Carrillo-Mora P, Valdés-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, et al. Longitudinal Analysis of Stroke Patients’ Brain Rhythms during an Intervention with a Brain-Computer Interface. Neural Plasticity. 2019 Apr 14. DOI: https://doi.org/10.1155/2019/7084618
15- Antelis JM, Montesano L, Ramos-Murguialday A, Birbaumer N, Minguez J. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. IEEE Transactions on Biomedical Engineering. 2017 Jan;64(1):99–111. DOI: https://doi.org/10.1109/TBME.2016.2541084
16- Rathee D, Chowdhury A, Meena YK, et al. A recuperação funcional dos membros superiores pós-AVC impulsionada pela interface cérebro-máquina se correlaciona com as redes corticais mediadas pela banda beta. J Neuroeng Rehabil. 2019 May 1;27(5):1020–1031. DOI: https://doi.org/10.1109/TNSRE.2019.2908125
17- Su J, Wang J, Wang W, Wang Y, Chayut Bunterngchit, Zhang P, et al. An Adaptive Hybrid Brain Computer Interface for Hand Function Rehabilitation of Stroke Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2024 Jan 1; 2950-2960. DOI: https://doi.org/10.1109/TNSRE.2024.3431025
18- Johnson N, Carey JR, Edelman BJ, Doud A, Grande AW, Kamakshi Lakshminarayan, et al. Combined rTMS and virtual reality brain–computer interface training for motor recovery after stroke. 2018 Feb 15. DOI: https://doi.org/10.1088/1741-2552/aa8ce3
19- Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications. 2018 Jun 20;9(1). DOI: https://doi.org/10.1038/s41467-018-04673-z
20- Li M, Liu Y, Wu Y, Liu S, Jia J, Zhang L. Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training. International Journal of Neuroscience. 2014 Jun;124(6):403–415. DOI: https://doi.org/10.3109/00207454.2013.850082
21- Spüler M, López-Larraz E, Ramos-Murguialday A. On the design of EEG-based movement decoders for completely paralyzed stroke patients. Journal of NeuroEngineering and Rehabilitation. 2018 Nov 20;15(1):110 DOI: https://doi.org/10.1186/s12984-018-0438-z
22- Leamy DJ, Kocijan J, Domijan K, Duffin J, Roche RA, Commins S, et al. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy. Journal of NeuroEngineering and Rehabilitation. 2014 Jan 18;11(1):9. DOI: https://doi.org/10.1186/1743-0003-11-9
23- Spüler M, Walter A, Ramos-Murguialday A, Naros G, Birbaumer N, Gharabaghi A, et al. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. Journal of Neural Engineering. 2014 Oct 31;11(6):066008. DOI: https://doi.org/10.1088/1741-2560/11/6/066008
24- Musso M, Hübner D, Schwarzkopf S, Bernodusson M, LeVan P, Weiller C, et al. Aphasia recovery by language training using a brain-computer interface - a proof-of-concept study. Brain Communications. 2022 Feb 8. DOI: https://doi.org/10.1093/braincomms/fcac008
25- Li C, Jia T, Xu Q, Ji L, Pan Y. Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients. Journal of Healthcare Engineering. 2019 Aug 28:1–12. DOI: https://doi.org/10.1155/2019/3817124
26- McCrimmon CM, King CE, Wang PT, Cramer SC, Nenadic Z, Do AH. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. Journal of NeuroEngineering and Rehabilitation. 2015 Jul 11;12:57. DOI: https://doi.org/10.1186/s12984-015-0050-4
27- Phang CR, Su KH, Cheng YY, Chen CH, Ko LW. Time synchronization between parietal-frontocentral connectivity with MRCP and gait in post-stroke bipedal tasks. Journal of neuroengineering and rehabilitation. 2024 jun 13; 21(1): 101. DOI: https://doi.org/10.1186/s12984-024-01330-z
28- Sburlea AI, Montesano L, de la Cuerda RC, Alguacil Diego IM, Miangolarra-Page JC, Minguez J. Detecting intention to walk in stroke patients from pre-movement EEG correlates. Journal of NeuroEngineering and Rehabilitation. 2015 Dec 12;12: 113. DOI: https://doi.org/10.1186/s12984-015-0087-4
29- Young BM, Stamm JM, Song J, Remsik AB, Nair VA, Tyler ME, et al. Brain–Computer Interface Training after Stroke Affects Patterns of Brain–Behavior Relationships in Corticospinal Motor Fibers. Frontiers in Human Neuroscience. 2016 Sep 16;10. DOI: https://doi.org/10.3389/fnhum.2016.00457
30- Jeong CH, Lim H, Lee J, Lee HS, Ku J, Kang YJ. Attentional state-synchronous peripheral electrical stimulation during action observation induced distinct modulation of corticospinal plasticity after stroke. Frontiers in neuroscience. 2024 Mar 28;18:1373589. DOI: https://doi.org/10.3389/fnins.2024.1373589
31- Remsik AB, Dodd K, Williams L, Thoma J, Jacobson T, Allen JD, et al. Behavioral Outcomes Following Brain-Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial. Frontiers in Neuroscience. 2018 Nov 8;12:752. DOI: https://doi.org/10.3389/fnins.2018.00752
32- Young BM, Nigogosyan Z, Walton LãM, Song J, Nair VA, Grogan SW, et al. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface. Frontiers in Neuroengineering. 2014 Jul 15;7:26. DOI: https://doi.org/10.3389/fneng.2014.00026
33- Savić AM, Novičić M, Miler-Jerković V, Djordjević O, Konstantinović L. Electrotactile BCI for Top-Down Somatosensory Training: Clinical Feasibility Trial of Online BCI Control in Subacute Stroke Patients. Biosensors. 2024 Jul 28;14(8):368. DOI: https://doi.org/10.3390/bios14080368
34- Bhagat NA, Yozbatiran N, Sullivan JL, Paranjape R, Losey C, Hernandez Z, et al. Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. NeuroImage: Clinical. 2020;28:102502. DOI: https://doi.org/10.1016/j.nicl.2020.102502
35- Kumari R, Janković MM, Costa A, Savić AM, Konstantinović Lj, Djordjević O, et al. Short term priming effect of brain-actuated muscle stimulation using bimanual movements in stroke. Clinical Neurophysiology. 2022 Jun;138:108–121. DOI: https://doi.org/10.1016/j.clinph.2022.03.002
36- Lee M, Park CH, Im CH, Kim JH, Kwon GH, Kim L, et al. Motor imagery learning across a sequence of trials in stroke patients. Restorative Neurology and Neuroscience. 2015 Aug 26;34(4):635–645. DOI: https://doi.org/10.3233/RNN-150534
37- Liu Y, Li M, Zhang H, Wang H, Li J, Jia J, et al. A tensor-based scheme for stroke patients’ motor imagery EEG analysis in BCI-FES rehabilitation training. Journal of Neuroscience Methods. 2014 Jan 30;222:238–249. DOI: https://doi.org/10.1016/j.jneumeth.2013.11.009
38- Kober SE, Schweiger D, Reichert JL, Neuper C, Wood G. Upper Alpha Based Neurofeedback Training in Chronic Stroke: Brain Plasticity Processes and Cognitive Effects. Applied Psychophysiology and Biofeedback. 2017 Mar 14;42(1):69–83. DOI: https://doi.org/10.1007/s10484-017-9353-5
39- Cervera MA, Soekadar SR, Ushiba J, Millán J del R, Liu M, Birbaumer N, et al. Brain‐computer interfaces for post‐stroke motor rehabilitation: a meta‐analysis. Annals of Clinical and Translational Neurology [Internet]. 2018 Mar 25;5(5):651–663. DOI: https://doi.org/10.1002/acn3.544
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Rafael Vieira de Menezes, Alice Beatriz Soares Pereira, Emilly Maria Lima de Sá, Gabriel Bernardes Rigueira, Julia Luna Beltrão Pereira Neto, Lauana Beatriz Ferreira Silva, Hugo Rafael de Souza e Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
As licenças de usuário definem como os leitores e o público em geral podem usar o artigo sem precisar de outras permissões. As licenças públicas do Creative Commons fornecem um conjunto padrão de termos e condições que os criadores e outros detentores de direitos podem usar para compartilhar obras originais de autoria e outros materiais sujeitos a copyright e alguns outros direitos especificados na licença pública disponível em https://creativecommons.org/licenses/by/4.0/deed.pt_BR. Ao usar a 4.0 International Public License, a Brazilian Medical Students (BMS) concede ao público permissão para usar o material publicado sob os termos e condições especificados acordados pela revista. Ao exercer os direitos licenciados, os autores aceitam e concordam em obedecer aos termos e condições da Licença Pública Internacional Creative Commons Atribuição 4.0.